ml4cps.tools module¶
Various methods to transform data.
- ml4cps.tools.binary_ordinal_encode(column, order)¶
- Encodes a pandas Series with binary ordinal encoding based on the specified order. - Parameters:
- column (pd.Series) – The column to encode. 
- order (list) – The ordered list of unique values in the column. 
 
- Returns:
- The binary ordinal encoded DataFrame for the given column. 
- Return type:
- pd.DataFrame 
 
- ml4cps.tools.composite_f1_score(anom_labels, start_event_idx, true_anom_idx)¶
- ml4cps.tools.compute_purity(cluster_assignments, class_assignments)¶
- ml4cps.tools.create_events_from_concurent_logs(data)¶
- ml4cps.tools.create_events_from_signal_vectors(data, sig_names=None)¶
- ml4cps.tools.data_list_to_dataframe(element, data, signal_names, prefix=None, last_var=None)¶
- ml4cps.tools.df_to_torch_tensor(df)¶
- ml4cps.tools.dict_to_csv(d, name='csv.csv')¶
- ml4cps.tools.dict_to_df(d)¶
- ml4cps.tools.encode_columns_to_string(df, name='Mode')¶
- ml4cps.tools.encode_nominal(x, columns=None, categories=None)¶
- ml4cps.tools.encode_nominal_list_df(dfs, columns=None, categories=None)¶
- ml4cps.tools.encode_ordinal(x, columns, order=None)¶
- ml4cps.tools.extend_derivative(signals, use_derivatives=(0, 1))¶
- ml4cps.tools.filter_na_and_constant(data)¶
- ml4cps.tools.filter_signals(data, sig_names)¶
- ml4cps.tools.flatten_dict(dict_of_lists)¶
- ml4cps.tools.flatten_dict_data(stateflow, reduce_keys_if_possible=True)¶
- ml4cps.tools.generate_random_walk(start_values, steps=100)¶
- Generates a random walk process for multiple variables. - Parameters: - start_values (list): A list of starting values for each variable. - steps (int): Number of steps in the random walk. - Returns: - pd.DataFrame: DataFrame containing the random walk process for each variable. 
- ml4cps.tools.get_binary_cols(df)¶
- ml4cps.tools.group_components(comp, *states)¶
- ml4cps.tools.group_data_on_discrete_state(data, state_column, reset_time=False, time_col=None)¶
- ml4cps.tools.interpolate(time, state, new_time)¶
- ml4cps.tools.melt_dataframe(df, timestamp=None)¶
- ml4cps.tools.random_split_torch(split, *args)¶
- ml4cps.tools.remove_timestamps_without_change(data, sig_names=None)¶
- Removes timestamps where no values changed in comparison to the previous timestamp. 
- ml4cps.tools.signal_vector_to_event(previous_vec, sig_vec)¶
- ml4cps.tools.signal_vector_to_state(sig_vec)¶
- ml4cps.tools.split_data_on_signal_value(data, sig_name, new_value)¶
- ml4cps.tools.split_train_valid(time, data, *other, split=0.8)¶
- ml4cps.tools.standardize(x, mean=None, std=None)¶
- ml4cps.tools.vec2str(discrete_data)¶
- ml4cps.tools.window(x, window_size, window_step)¶