ml4cps.control.base module¶
- class ml4cps.control.base.Agent(policy, gamma)¶
Bases:
object
- class ml4cps.control.base.EnvironmentTA(automaton)¶
Bases:
EnvCustom Environment that follows Gymnasium interface
- property action_space¶
- close()¶
Clean up resources if necessary.
- property episode_length¶
- expected_cum_reward(policy, discounted=True, max_depth=2)¶
- metadata: dict[str, Any] = {'render_fps': 30, 'render_modes': ['human']}¶
- render(mode='human')¶
Render the environment. No-op in this example.
- reset(seed=None, options=None)¶
Reset the environment to an initial state and return the initial observation.
- property state¶
- step(action)¶
Take an action and return the next observation, reward, done, and info.